在实际应用中,高度要求进行语义细分的域概括,在这种应用中,训练有素的模型预计在以前看不见的域中可以很好地工作。一个挑战在于缺乏数据可能涵盖可能看不见的培训领域的各种分布的数据。在本文中,我们提出了一个Web图像辅助域的概括(Wedge)方案,该方案是第一个利用Web爬行图像多样性进行概括的语义细分。为了探索和利用现实世界的数据分布,我们收集了一个网络爬行的数据集,该数据集在天气条件,站点,照明,相机样式等方面呈现出较大的多样性。我们还提出了一种注入Web样式表示的方法 - 将数据编进培训期间的源域中,这使网络能够以可靠的标签体验各种样式的图像,以进行有效的培训。此外,我们使用带有预测的伪标签的Web爬行数据集进行培训,以进一步增强网络的功能。广泛的实验表明,我们的方法显然优于现有的域泛化技术。
translated by 谷歌翻译
In this work, we propose a new approach that combines data from multiple sensors for reliable obstacle avoidance. The sensors include two depth cameras and a LiDAR arranged so that they can capture the whole 3D area in front of the robot and a 2D slide around it. To fuse the data from these sensors, we first use an external camera as a reference to combine data from two depth cameras. A projection technique is then introduced to convert the 3D point cloud data of the cameras to its 2D correspondence. An obstacle avoidance algorithm is then developed based on the dynamic window approach. A number of experiments have been conducted to evaluate our proposed approach. The results show that the robot can effectively avoid static and dynamic obstacles of different shapes and sizes in different environments.
translated by 谷歌翻译
Training agents via off-policy deep reinforcement learning (RL) requires a large memory, named replay memory, that stores past experiences used for learning. These experiences are sampled, uniformly or non-uniformly, to create the batches used for training. When calculating the loss function, off-policy algorithms assume that all samples are of the same importance. In this paper, we hypothesize that training can be enhanced by assigning different importance for each experience based on their temporal-difference (TD) error directly in the training objective. We propose a novel method that introduces a weighting factor for each experience when calculating the loss function at the learning stage. In addition to improving convergence speed when used with uniform sampling, the method can be combined with prioritization methods for non-uniform sampling. Combining the proposed method with prioritization methods improves sampling efficiency while increasing the performance of TD-based off-policy RL algorithms. The effectiveness of the proposed method is demonstrated by experiments in six environments of the OpenAI Gym suite. The experimental results demonstrate that the proposed method achieves a 33%~76% reduction of convergence speed in three environments and an 11% increase in returns and a 3%~10% increase in success rate for other three environments.
translated by 谷歌翻译
We introduce an approach for the answer-aware question generation problem. Instead of only relying on the capability of strong pre-trained language models, we observe that the information of answers and questions can be found in some relevant sentences in the context. Based on that, we design a model which includes two modules: a selector and a generator. The selector forces the model to more focus on relevant sentences regarding an answer to provide implicit local information. The generator generates questions by implicitly combining local information from the selector and global information from the whole context encoded by the encoder. The model is trained jointly to take advantage of latent interactions between the two modules. Experimental results on two benchmark datasets show that our model is better than strong pre-trained models for the question generation task. The code is also available (shorturl.at/lV567).
translated by 谷歌翻译
We introduce TeSS (Text Similarity Comparison using Sentence Encoder), a framework for zero-shot classification where the assigned label is determined by the embedding similarity between the input text and each candidate label prompt. We leverage representations from sentence encoders optimized to locate semantically similar samples closer to each other in embedding space during pre-training. The label prompt embeddings serve as prototypes of their corresponding class clusters. Furthermore, to compensate for the potentially poorly descriptive labels in their original format, we retrieve semantically similar sentences from external corpora and additionally use them with the original label prompt (TeSS-R). TeSS outperforms strong baselines on various closed-set and open-set classification datasets under zero-shot setting, with further gains when combined with label prompt diversification through retrieval. These results are robustly attained to verbalizer variations, an ancillary benefit of using a bi-encoder. Altogether, our method serves as a reliable baseline for zero-shot classification and a simple interface to assess the quality of sentence encoders.
translated by 谷歌翻译
As the demand for autonomous driving increases, it is paramount to ensure safety. Early accident prediction using deep learning methods for driving safety has recently gained much attention. In this task, early accident prediction and a point prediction of where the drivers should look are determined, with the dashcam video as input. We propose to exploit the double actors and regularized critics (DARC) method, for the first time, on this accident forecasting platform. We derive inspiration from DARC since it is currently a state-of-the-art reinforcement learning (RL) model on continuous action space suitable for accident anticipation. Results show that by utilizing DARC, we can make predictions 5\% earlier on average while improving in multiple metrics of precision compared to existing methods. The results imply that using our RL-based problem formulation could significantly increase the safety of autonomous driving.
translated by 谷歌翻译
This paper presents a solution to the Weather4cast 2022 Challenge Stage 2. The goal of the challenge is to forecast future high-resolution rainfall events obtained from ground radar using low-resolution multiband satellite images. We suggest a solution that performs data preprocessing appropriate to the challenge and then predicts rainfall movies using a novel RainUNet. RainUNet is a hierarchical U-shaped network with temporal-wise separable block (TS block) using a decoupled large kernel 3D convolution to improve the prediction performance. Various evaluation metrics show that our solution is effective compared to the baseline method. The source codes are available at https://github.com/jinyxp/Weather4cast-2022
translated by 谷歌翻译
Federated Learning has emerged to cope with raising concerns about privacy breaches in using Machine or Deep Learning models. This new paradigm allows the leverage of deep learning models in a distributed manner, enhancing privacy preservation. However, the server's blindness to local datasets introduces its vulnerability to model poisoning attacks and data heterogeneity, tampering with the global model performance. Numerous works have proposed robust aggregation algorithms and defensive mechanisms, but the approaches are orthogonal to individual attacks or issues. FedCC, the proposed method, provides robust aggregation by comparing the Centered Kernel Alignment of Penultimate Layers Representations. The experiment results on FedCC demonstrate that it mitigates untargeted and targeted model poisoning or backdoor attacks while also being effective in non-Independently and Identically Distributed data environments. By applying FedCC against untargeted attacks, global model accuracy is recovered the most. Against targeted backdoor attacks, FedCC nullified attack confidence while preserving the test accuracy. Most of the experiment results outstand the baseline methods.
translated by 谷歌翻译
This paper presents a technique to train a robot to perform kick-motion in AI soccer by using reinforcement learning (RL). In RL, an agent interacts with an environment and learns to choose an action in a state at each step. When training RL algorithms, a problem called the curse of dimensionality (COD) can occur if the dimension of the state is high and the number of training data is low. The COD often causes degraded performance of RL models. In the situation of the robot kicking the ball, as the ball approaches the robot, the robot chooses the action based on the information obtained from the soccer field. In order not to suffer COD, the training data, which are experiences in the case of RL, should be collected evenly from all areas of the soccer field over (theoretically infinite) time. In this paper, we attempt to use the relative coordinate system (RCS) as the state for training kick-motion of robot agent, instead of using the absolute coordinate system (ACS). Using the RCS eliminates the necessity for the agent to know all the (state) information of entire soccer field and reduces the dimension of the state that the agent needs to know to perform kick-motion, and consequently alleviates COD. The training based on the RCS is performed with the widely used Deep Q-network (DQN) and tested in the AI Soccer environment implemented with Webots simulation software.
translated by 谷歌翻译
Generative models have shown great promise in synthesizing photorealistic 3D objects, but they require large amounts of training data. We introduce SinGRAF, a 3D-aware generative model that is trained with a few input images of a single scene. Once trained, SinGRAF generates different realizations of this 3D scene that preserve the appearance of the input while varying scene layout. For this purpose, we build on recent progress in 3D GAN architectures and introduce a novel progressive-scale patch discrimination approach during training. With several experiments, we demonstrate that the results produced by SinGRAF outperform the closest related works in both quality and diversity by a large margin.
translated by 谷歌翻译